McKesson Clinical Evidence Classification

References cited in the clinical content are classified according to the type of evidence presented. The class ratings, I through V, are intended to provide a classification of the evidence but are not necessarily hierarchical. Classifications appear in parentheses at the end of each reference. References followed by an (NC) are not classified; examples include pre-published research or information from government, manufacturer, laboratory, or patient education websites.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Meta-analysis, technology assessment, or systematic review</td>
</tr>
<tr>
<td>Class II</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td>Class III</td>
<td>Observational or epidemiologic study</td>
</tr>
<tr>
<td>Class IV</td>
<td>Evidence-based guideline</td>
</tr>
<tr>
<td>Class V</td>
<td>Expert opinion, panel consensus, literature review, text or reference book, descriptive study, case report, or case series</td>
</tr>
</tbody>
</table>

Class I

Class I sources synthesize the results of multiple studies. When quantitative synthesis is possible, meta-analyses can provide a more accurate estimate of the effect or association size than individual smaller studies can. A Class I study that finds insufficient evidence to support or refute an intervention (due to a lack of appropriate primary research) is inconclusive. A potential weakness of Class I studies is that they may only assess published research, potentially leaving their findings vulnerable to publication bias.

Class II

A randomized controlled trial (RCT) is an experimental study design in which subjects are randomly assigned to an intervention or a control group. An RCT is the gold standard for testing cause and effect relationships. Intention-to-treat analysis should be performed to account for missing data points.

Class III

Observational or epidemiologic studies can suggest an association between events or findings. These associations cannot be used to establish causality. Cross-sectional, cohort, and case-control studies are all used to identify possible risk factors. Cross-sectional studies are also used to determine the prevalence of a condition. Cohort studies are used to study incidence, the natural history of a condition, prognosis after a specific exposure, and associated harms. Nonrandomized controlled trials are sometimes used when randomization is impossible or unethical.

Class IV

Evidence-based guidelines are systematically developed recommendations for clinical practice. Evidence-based guidelines identify the methodology used to gather the evidence on which the recommendations are based. Usually, a grading system for both the quality of the evidence and the strength of the recommendations is provided. Guidelines that are evidence-based may also contain consensus recommendations in areas where evidence is lacking, but these recommendations are clearly identified and appropriately graded.

Class V

Class V references may be the best information in the absence of other evidence. Expert opinion, panel consensus, literature reviews, and descriptive studies (case reports or case series) are subject to significant bias. A case series with comparison to historical controls can be plagued with missing data, and data extraction inconsistencies are common. The use of historical controls does not address how the diagnosis of disease or its treatment has evolved over time with newer technologies or medication. Text book information may be out of date by the time the book is published.
Comparative Effectiveness Research (CER)

Citations are designated with the CER label as part of the evidence classification if the article cited is one of the following:
1. A clinical trial or other clinical study that directly compares two or more health care interventions for the same clinical scenario.
2. A systematic review that compares two or more health care interventions by synthesizing the research from previous clinical studies.

Bibliography


Aurora. Practice Parameters for the Surgical Modifications of the Upper Airway for Obstructive Sleep Apnea in Adults. Sleep 2010. 33(10):1408-1413. (IV)


Bongaarts et al. Infant orthopedics has no effect on maxillary arch dimensions in the deciduous dentition of children with complete unilateral cleft lip and palate (Dutchcleft). Cleft Palate Craniofac J 2006. 43(6):665-72. (II)


Browaldh et al. 15-year efficacy of uvulopalatopharyngoplasty based on objective and subjective data. Acta Otolaryngol 2011. 131(12):1303-10. (V)

Browaldh et al. SKUP3 randomised controlled trial: polysomnographic results after uvulopalatopharyngoplasty in selected patients with obstructive sleep apnoea. Thorax 2013. 68(9):846-53. (II)


Dang and Gubbels. Is nasopharyngoscopy necessary in adult-onset otitis media with effusion? Laryngoscope 2013. 123(9):2081-2. (V)


Graham et al. Bilateral sequential cochlear implantation in the congenitally deaf child: evidence to support the concept of a 'critical age' after which the second ear is less likely to provide an adequate level of speech perception on its own. Cochlear Implants Int 2009. 10(3):119-41. (III)


Koskenkorva et al. Short-term outcomes of tonsillectomy in adult patients with recurrent pharyngitis: a randomized controlled trial. CMAJ 2013. 185(8):E331-6. (II)
Kushida et al. Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep 2006. 29(3):375-380. (IV)
La Fata et al. CSF leaks: correlation of high-resolution CT and multiplanar reformations with intraoperative endoscopic findings. AJNR Am J Neuroradiol 2008. 29(3):536-41. (III CER)
INTERQUAL® PROCEDURES CRITERIA BIBLIOGRAPHY: ORO-MAXILLO-FACIAL, DENTAL, & OTOLARYNGOLOGY


Sedaghat et al. Clinical assessment is an accurate predictor of which patients will need septoplasty. Laryngoscope 2013. 123(1):48-52. (III)


